Linear Least Square Problem (LSP) and the Bias-Variance Trade-off in Machine Learning

MODERATOR: Prof Montaz Ali

Group Members:
Fridah Meso
Atlegang Molubi
Ntombifuthi Khumalo
Ayobami Akinyelu
Valentine Azom
Africa Mgudlwa
Ndivhuwo Ndou
Rudzani Nemusunda
Edward Nonyane
Salma Omer
Ebenezer Popoola

Introduction

Bias Vs Variance

Simplified Linear Regression Model

- Generate General Model from Big Data
- ▶ Initially, Model is unknown
- Due to lack of dataset, we are currently trying to generate a dataset using a known function
- ► Procedures include

Procedures

- ► Generate Intervals [-2, 5]
- $F(y) = y^4 3y^3 + 2y^2 + 5y + 2$
- ► Generate $b_i y_i$ for 500 points (b_i = f(y_i) + ϵ)
- Randomly select 3 groups of 50 points from the 500 points
- ▶ Solve Ax = b to derive h_i for each group
- Find bias and variance
- Go through the same process for quadratic, cubic and others

Squared Residual of the LSP

► Variance =
$$\frac{1}{n} \sum_{i=1}^{n} (h_i - \overline{h})^2$$

► Bias =
$$(F(y_1) - \bar{h})^2 + (F(y_2) - \bar{h})^2 + \dots + ((F(y_n) - \bar{h})^2)$$

Squared Residual of the LSP

Bias vs Variance

Result

Result (Cont'd)

Result (Cont'd)

Result (Cont'd)

THANK YOU!